解答:(1)证明:在平行四边形ABCD中,AB∥DC,
∴∠BAD+∠ADC=180°.
∵AE,DF分别是∠BAD,∠ADC的平分线,
∴∠DAE=∠BAE=
∠BAD,∠ADF=∠CDF=1 2
∠ADC.1 2
∴∠DAE+∠ADF=
∠BAD+1 2
∠ADC=90°.1 2
∴∠AGD=90°.
∴AE⊥DF.
(2)解:在平行四边形ABCD中,AD∥BC,BC=AD=10,
∴∠DAE=∠AEB,∠ADF=∠DFC.
由(1)得∠BAE=∠AEB,∠CDF=∠DFC.
∵AB=DC=8,
∴BE=AB=8,FC=CD=8.
∴EC=BC-BE=2.
∴EF=FC-EC=6.
∵AD∥BC,
∴∠DAG=∠FEG,∠ADG=∠EFG.
∴△AGD∽△EGF.
∴
=AD EF
.AG EG
∴
=10 6
.4 EG
∴EG=
.12 5