解答:证明:连接AC,∵EA切⊙O于A,∴∠EAB=∠ACB.∵ AB = AD ,∴∠ACD=∠ACB,AB=AD.于是∠EAB=∠ACD.又四边形ABCD内接于⊙O,∴∠ABE=∠D.∴△ABE∽△CDA.于是 AB CD = BE DA ,即AB?DA=BE?CD.∴AB2=BE?CD.