解答:(1)证明:∵四边形ABCD是矩形,
∴∠ADF=90°,AD∥BC,
∵RT△ADF中,G是AF中点,
∴GA=GD=GF
∴∠DGF=2∠DAE
∵AD∥BE,
∴∠AEB=∠DAE,
∵DG=DE,
∴∠DEA=∠DGF
∴∠DEA=2∠AEB;
(2)过点作GH⊥DC于H,
∵AD∥GH,G是AF中点,
则GH=
AD=AB=DC,1 2
又∵DE=DG=GF,
∴易证:Rt△GHF≌Rt△DCE,
∵∠DEA=2∠AEB,
∴∠DCE=∠GFH=3∠AEB=3∠DAE,
∵∠DAE+∠GFH=90°,
∴4∠DAE=90°,
∠DAE=22.5°,
∴∠DEA=2∠DAE=45°.