请问这道题的极限如何计算?

2025年05月07日 05:42
有1个网友回答
网友(1):

f(n)=[3*2^n+nπ^n+(-e)^n+n^3]^(1/n)
lnf(n)=ln{[3*2^n+nπ^n+(-e)^n+n^3]^(1/n)}=ln[3*2^n+nπ^n+(-e)^n+n^3]/n=ln((π^n)*(3*(2/3)^n+n+(-e/π)^n+n^3/π^n))/n=lnπ+ln(3*(2/3)^n+n+(-e/π)^n+n^3/π^n)/n
3*(2/3)^n->0
(-e/π)^n->0
n^3/π^n->0
lnn/n->0
limf(n)=e^(limlnf(x))=e^(lnπ)=π