f
设真数t=(kx-1)/(x-1)>0
函数f
需t=(kx-1)/(x-1)在【10,正无穷)上单调递增
k=0时,t=1/(1-x) 定义域为(-∞,1)不合题意
t=[(kx-k)+(k-1)]/(x-1)
=k+(k-1)/(x-1)
k>1时,
t=k+(k-1)/(x-1)在(1,+∞)上为减函数,不合题意
k=1f(x)=0,不合题意
0
即(x-1/k)/(x-1)>0
解得x<1或x>1/k
∵k-1<0
∴ t=k+(k-1)/(x-1)在(1/k,+∞)上递增
函数在【10,正无穷)上单调递增
需1/k<10,k>1/10
∴1/10
k<0时,(kx-1)/(x-1)>0
即(x-1/k)/(x-1)<0
解得1/k
对真数(kx–1)/( x–1)求导,令导数大于0在(10,无穷大)成立即可,