6 . 均值不等式xn=1/2(xn-1 +a/xn-1) >=√a 表明xn有下界
xn - xn-1= 1/2(a/x(n-1) - x(n-1))=(a-x²(n-1))(xn-1)) 表明xn单调递减
根据单调有界准则,xn存在极限,设为A
原等式令n趋于无穷得,A=1/2(A+a/A) 解得A=√a
7.设原式为A,则A>lim n²[ 1/(n²+n)² + 2/(n²+n)² +....+n/(n²+n)²]
=lim n²(1+n)n/[2(n²+n)²]=lim n/2(n+1)=1/2
另一方面 A< lim n²[ 1/(n²)² + 2/(n²)² +....+n/(n²)²]
= lim n²(1+n)n/[2n^4]=lim (n+1)/2n= 1/2
由夹逼准则得,A=1/2