证明:∵在RtΔABC中,AD⊥BC∴∠BAD=∠ACB=∠F∵E是AC的中点∴DE=EC∴∠EDC=∠ECD=∠BDF=∠F∴BD= BF∴∠BDF=∠BAD∵∠F=∠F∴ΔADF∽ΔBDFBD/AD=DF/AF∵RtΔBDA∽RtΔBAC∴BD/AD=AB/AC∴DF/AF=AB/AC∴AB·AF=AC·DF