定积分与不定积分在历史上原本是两个没有关系的问题,不定积分相当于导数的逆运算,而定积分原本就是研究面积、体积等问题发展起来的,只是后来牛顿和莱布尼兹发现了它们之间的联系,可以通过不定积分来计算定积分,所以它们才起了这么相近的名称。你在一开始学习定积分时,可以先不要去想不定积分的问题,忘记不定积分,就把定积分当作一个新东西来学就行了,等到学完N-L公式以后,再将它们联系起来。
定积分的结果是一个数字,这是它与不定积分的本质区别,正因为最后结果只是一个数,无论在做题中你用什么变量做积分变量,其实对于最后的那个数字都不会产生影响,因此定积分与积分变量无关。与下面的求和问题道理是一样的:
i 从1到10,对 i 的平方求和;
n从1到10,对n的平方求和;
这两个问题没有任何区别,因为结果都只是一个数,与求和变量无关,不论你用 i 还是用 n,其实研究的都是1平方+2平方+...+10平方。